SPOUD

From Distributed Logs to Database Replication

Dr. Samuel Benz

How to achieve scalability, fault tolerance and
consistency in distributed systems?

Distributed applications in theory. ..

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
[ele]e] } 000000 000 0000

Why do we see such architectures?

Distributed Stateful Components

state (vs. stateless)
shared > 1 client (isolation)
mutable > 0 writer (concurrency)
distributed > 1 DB (consistency)
geographically > 50km (latency)

Conclusion
[e]e]

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
0000 @00000 000 0000

Reliable and Scalable Stateful Services

Problem
@ Scalability:
® Size: Internet scale services

® Location: Access latency
® Administration: Multiple organizational units

® Fault-Tolerance

Solution
@ Distributed Data: Replication
® Distributed Computing: Coordination

Conclusion
[e]e]

Introduction Reliable and Scalable Services Distributed
0000 0®0000 000

Different Types of Replication

Active Replication

Y

Consensus

Passive Replication

Distributed Log

0000

'».' vLEss '».': vLEss '».' vLEss
P — P,
Cstate) (state) Cstate)

process

Conclusion
[e]e]

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log Conclusion
0000 00@000 000 0000 00

State Machine Replication — Fault-tolerance

Replica Replica

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
0000 000800 000 0000

State Machine Replication — Consistency

Requirement: Agreement Requirement: Order

1) SetA=1
2)SetB=1

%‘

A=NULL

=

Replica

Conclusion
[e]e]

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
0000 000000 000 0000

Partitioning — Scalability

v
=[]

Cluster

Conclusion
00

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log Conclusion
0000 00000e 000 0000 [e]e]

Consistent Partitioning

@ The system ensures strong consistency within partitions and
" best-effort” across partitions.

® The system ensures strong consistency using 2PC across
partitions.

©® The system orders commands before executing them or checks
their order after executing the commands (Atomic
Multicast).

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log Conclusion
0000 000000 000 0000 00

L
Simple Coordination Problem

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
0000 000000 oeo 0000

Consensus Problem

Fundamental Result

No algorithm can solve consensus in an
asynchronous system despite a single crash.

FLP impossibility result (after Fischer, Lynch, and Paterson, 1985)

Conclusion
[e]e]

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
0000 000000 ooe 0000

Consensus and Atomic Broadcast

In a crash-stop failure model consensus is defined as follows:
@ Termination: Every correct process eventually decides.
® Agreement: No two correct processes decide differently.
® Uniform integrity: Every process decides at most once.

O Uniform validity: If a process decides v, then v was
proposed by some process.

[Chandra et al. Unreliable failure detectors for reliable distributed systems. 1996.]

Conclusion
[e]e]

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log Conclusion
0000 000000 ooe 0000 [e]e]

Consensus and Atomic Broadcast

Additionally Atomic Broadcast:

® Total order: If two correct processes p and g deliver two
messages m and m’, then p delivers m before m’ if and only if
q delivers m before m'.

[Chandra et al. Unreliable failure detectors for reliable distributed systems. 1996.]

Introduction
0000

Reliable and Scalable Services Distributed Consensus Distributed Log
000000 000 0000

[st Mesmac Laj _— oﬁfsct—

tlelslals | e isl9

| faeln artition's wrff-a[qgao[o
Fa/ F e ﬂ

Conclusion
00

Introduction Reliable and Scalable Services
0000 000000 000

Distributed Log

e
i!!!!ﬁ :ﬁxl%%é; ﬁ:
PGS o PN

(a) replicating state

Distributed Consensus

Distributed Log
0000

B .
.y ~
SN

[AAAAAAA

A
e P ey

[(B+[B«[B] [Bl«[B+[B]
(c) sharing state

e
000 -00oans
-V

CRE g
NS L SN B

(d) partitioning state

I
o0 -0--888
-V

Conclusion
00

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log

0000 000000

000 00e0

Distributed Transactions

T->BeginTX();

TX start pos = #1 curowner = owners->get(ledgerid);

if(curowner->equals(myname))
. list->add(item);
speculative gtat)s = T->EndTX();

update at #2
commit record:
reads: (owners#1)
updates by writes: (/ist#2)

other clients

111
aa

conflict window
% TX commits if read set has not

changed in conflict window

Conclusion
00

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log
0000 000000 000 000e

Distributed Data Structures

App2

BeginTX

A->read();

C->write();

-o-o- EndTX DD
App2 learns TX
l decision status without
record playing A

Plays streams A and C, skips B Plays streams B and C, skips A

Conclusion
00

Introduction Reliable and Scalable Services Distributed Consensus
0000 000000 000

Kafka Consistency

Producer
Broker

(message log)

Distributed Log
0000

Consumer

Conclusion
o0

Introduction Reliable and Scalable Services Distributed Consensus Distributed Log Conclusion
0000 000000 000 0000 oe

Kafka Scalability

Broker

Producer

partition C

e e T |

I
1
I
L

SPOUD

	Introduction
	
	

	Reliable and Scalable Services
	
	

	Distributed Consensus
	

	Distributed Log
	

	Conclusion
	

	Appendix

