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How to achieve scalability, fault tolerance and
consistency in distributed systems?



Distributed applications in theory. ..
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Why do we see such architectures?

Distributed Stateful Components

state (vs. stateless)
shared > 1 client (isolation)
mutable > 0 writer (concurrency)
distributed > 1 DB (consistency)
geographically > 50km (latency)

Conclusion
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Reliable and Scalable Stateful Services

Problem
@ Scalability:
® Size: Internet scale services

® Location: Access latency
® Administration: Multiple organizational units

® Fault-Tolerance

Solution
@ Distributed Data: Replication
® Distributed Computing: Coordination

Conclusion
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Different Types of Replication

Active Replication

Y

Consensus

Passive Replication

Distributed Log
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State Machine Replication — Fault-tolerance

Replica Replica
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State Machine Replication — Consistency

Requirement: Agreement Requirement: Order

1) SetA=1
2)SetB=1
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Replica
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Partitioning — Scalability

v
=[]

Cluster
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Consistent Partitioning

@ The system ensures strong consistency within partitions and
" best-effort” across partitions.

® The system ensures strong consistency using 2PC across
partitions.

©® The system orders commands before executing them or checks
their order after executing the commands (Atomic
Multicast).
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L
Simple Coordination Problem
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Consensus Problem

Fundamental Result

No algorithm can solve consensus in an
asynchronous system despite a single crash.

FLP impossibility result (after Fischer, Lynch, and Paterson, 1985)

Conclusion
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Consensus and Atomic Broadcast

In a crash-stop failure model consensus is defined as follows:
@ Termination: Every correct process eventually decides.
® Agreement: No two correct processes decide differently.
® Uniform integrity: Every process decides at most once.

O Uniform validity: If a process decides v, then v was
proposed by some process.

[Chandra et al. Unreliable failure detectors for reliable distributed systems. 1996.]

Conclusion
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Consensus and Atomic Broadcast

Additionally Atomic Broadcast:

® Total order: If two correct processes p and g deliver two
messages m and m’, then p delivers m before m’ if and only if
q delivers m before m'.

[Chandra et al. Unreliable failure detectors for reliable distributed systems. 1996.]
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Distributed Log
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(a) replicating state

Distributed Consensus

Distributed Log
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Distributed Transactions

T->BeginTX();

TX start pos = #1 curowner = owners->get(ledgerid);

if(curowner->equals(myname))
. list->add(item);
speculative  gtat)s = T->EndTX();

update at #2
commit record:
reads: (owners#1)
updates by writes: (/ist#2)

other clients

111
aa

conflict window
% TX commits if read set has not

changed in conflict window
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Distributed Data Structures

App2

BeginTX

A->read();

C->write();

-o-o- EndTX DD
App2 learns TX
l decision status without
record playing A

Plays streams A and C, skips B Plays streams B and C, skips A

Conclusion
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Kafka Consistency

Producer
Broker

(message log)

Distributed Log
0000

Consumer
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Kafka Scalability
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